Bounds on the restrained Roman domination number of a graph

Authors

Abstract:

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The weight of a restrained Roman dominating function isthe value $omega(f)=sum_{uin V(G)} f(u)$. The minimum weight of arestrained Roman dominating function of $G$ is called the { emrestrained Roman domination number} of $G$ and denoted by $gamma_{rR}(G)$.In this paper we establish some sharp bounds for this parameter.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

bounds on the restrained roman domination number of a graph

a {em roman dominating function} on a graph $g$ is a function$f:v(g)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}a {em restrained roman dominating}function} $f$ is a {color{blue} roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} the wei...

full text

On the Roman Edge Domination Number of a Graph

For an integer n ≥ 2, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely Roman sdominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function f : V → {0, 1, 2, · · · , n} satisfying the condition that |f(u)− f(v)| ≥ s for each edge uv ∈ E with f(u) or f(v) ∈ I . Similarly, a Smarandachely Roman edge s-dominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a func...

full text

On the restrained Roman domination in graphs

A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. For a given graph,...

full text

roman game domination subdivision number of a graph

a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...

full text

Upper bounds for the Roman domination subdivision number of a graph

A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  75- 82

publication date 2016-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023